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Radiant Ignition of Adjacent
Upholstered Furniture - A Simple
Approach

> NZ CBUF - Combustion Behavior of
Upholstered Furniture

> Flame radiation side benefit

» Previous research
» Heskestad
> Will the second item ignite? Babrauskas

» SFPE Engineering guide — Assessing Flame
Radiation to External targets from Pool
Fires, Beyler et. al.
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Cylindrical Model
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Heskestad's Correlation

H, =-1.02D +0.235Q?*"

Where:
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Q = measured by ODC
)” = peak RHR Cone calorimeter

cone

H = height of the flame




2.5 7

Equivalent Diameter (m)
N
o

o
»

0.0

-
(3
|

-_—
o
|

Equivalent Diameter

A

Q

Q//
cone
|

— AS5S1
— A2S2

o

60

120

180

Time (s)

240

300 360

CANTERBURY

cccccccccc * NEW ZEALAND



Flame Height (m)

g
o

N
(3]
|

g
o
|

-
(3)

-
(=)

o
()

o
(<)

Flame Height

Data VVersus Correlation

e |
el ﬁ\
u]
\
O \
o
/ | \\V\\
0 60 120 180 240 300

Time (s)




Comparison of all experiments
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Emissivity
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Temperature (C)

Flame Temperature Data
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Single Seater Results
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Two Seater Results

35

Heat Flux (kW/m?)
=5 - N N W
o (3] o (3, o

()]
|

0 60 120 180 240

Time (s)

A2S2

360

UNIVERSITY OF

\

CANTERBURY

CHRISTCHURCH * NEW ZEALAND



Furniture Flames




Radiant Ignition of Upholstered
Furniture

|® > Experiments
» Results
» Analysis
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Ign/t/on Apparatus




Radiant Ignition of Upholstered
Furniture

> 14 NZ Fabrics

» 3 NZ Polyurethane Foam (Domestic,
Commercial, Aviation)

» ISO Ignitability Apparatus w/electric arc

> g. = 40, 35, 30, 25, 20, 15, 10 kW/m?
+ minimum heat flux levels

» 5 replicate samples at each heat flux
» Over 900 experiments were conducted




Fabric Matrix
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GO IS igl Bl E B e =82

aaa|<|0|0O|5|z5 F from over

Pacific 100 100 .
Saffron 100 100
Azure 100 100 > COIOr WaS
Gold 100|100 not a
Dark red 100 100 :
Cadet 42 | 58 100 variable
Blue 51 49 100 :
o = = ol » Pure fabrics
L 2 49 100 chosen when
Forest 60 | 40 100 :
Denim 31 | 21 | 48 100 pOSS| bl a
Spring 43 | 41 16 100
Taupe 39 40 21 100

* Fabric 28 is a fabric treated with fire retardant additive.



Assumptions

» Ignition occurs when the surface reaches

a
> T
> T

P
> T
C

> K

material dependent temperature
he material is opaque and inert

he material has uniform thermal
roperties independent of T

nermal decomposition and associated
nanges are neglected

eat flow into the solid is 1-dimensional

> H

convective and radiative with a constan
convection coefficient

eat loss from the surface is both




Time to ignition - thin solid
Approximate solution

G O, e
net e rr P dt

Initial conditiort:=0 T =T_

Solution to simplified formaterial dependent
specific to ignition

. _TO) Approximation of
o ) surface heat loss
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Thermally Thick - Time to Ignition

Approximate solution:

Material dependent
specific to ignition

e =T
gz - 4%y

Approximation of
Net heat absorbed




Critical versus Minimum Heat

Flux

> Minimum heat flux for ignitiog},, the
heat flux below which ignition under
practical conditions (in bench scale test
or a real fire) cannot occur.

> Critical heat flux for ignitién  is an
estimate of;’.  derived from a
correlation of experimental data.




Estimating the Ignition
Temperature

Steady State Energy Balance

at Surface
. | _

Radiative Convective
losses losses

Nonlinear - interative
solution
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Melting Fabric




Melting Fabric




Charring Fabric




Charring Fabric




Analysis
» Thermally Thin
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» Thermally Thick
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Results 15kW/m?<q”, <40kW/m?
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Fabric Effects
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Conclusions Radiant Ignition of

> The res

Upholstered Furniture

ults presented here show that

upholstered furniture composites present a
complex ignition problem.

» The melting of the foam and behaviour of the
fabrics further complicates the problem.

» Ignoring these complications, the results show
that when the fabric-foam composite is
exposed to external radiation of 15 kW/m? or

more, t
therma

ne time to ignition correlates well as a
ly thin solid

> When t

he external radiant heat fluxes are

below 15 kW/m?, i.e. approaching the

minimu

thermally thin or thermally thick correlations

m heat flux levels, neither the

fit the data well.



Conclusions - Radiation from the
Source

» Due to the complex geometry of
upholstered furniture flames it is
difficult to model the radiation.

» Point source approximation give
surprisingly accurate predictions for the
flame radiation (At least at 1.5 m from
burning chair)

» More complex is not always accurate.




Further Research

» Improve the characterization of the
flame shape using image processing of
the video tape.

» Conduct additional experiments with
more detailed heat flux measurements.

» Using the material properties from the
steady state experiments to predict the
ignhition from a transient exposure and
compare with new transient results.




Flame Analysis
with
Image Processing

Paul Mason




Furniture Flames




Motivation

» To identify and quantify the shape of a
flame

» To effectively model flame shape
(cylinder, truncated cone, double cone,
etc.)

» To correlate flame shape with energy
release rate

» To use multiple cameras to establish
flame shape (3D)
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Algorithm

Extract blue color plane

_'T i
Ty -
-'Ii]I
Tk
| o
:
- d i

Bl

T




Algorithm

Quantify

Maximal value: 255.00




Algorithm

Threshold




Algorithm

Image mask: from ROI




Algorithm

Remove small particles




Algorithm

Particle Analysis: Area (pixels)

Results... 1

Area (unit) 1782
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Future Efforts

> Minimize reflections

» Investigate smoke effects & video
compression effects

» Average the flame - 100%, 50%, etc.
» Measure flame height & width
» Convert length & area from pixels to m?

» Estimate flame volume (3D
visualization)
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